Search results

1 – 6 of 6
Article
Publication date: 23 November 2020

Farhana Naeem, Fareha Asim and Muhammad Tufail

Low pilling and wrinkle-free appearance of cellulosic fabrics are always demanded. Resin finishes are applied to improve these properties, but there is an adverse effect of the…

Abstract

Purpose

Low pilling and wrinkle-free appearance of cellulosic fabrics are always demanded. Resin finishes are applied to improve these properties, but there is an adverse effect of the resin finish as it tends to reduce the strength of the fabrics. Therefore, the effect of the two most important finishes; anti-pilling and resin finish, on the strength characteristics of 100% viscose and 50:50 Viscose/cotton plain and satin fabrics were investigated in this paper. The purpose of this study is to identify significant factors affecting the strength of fabrics finished with crosslinking agents [non-ionic acrylate copolymer and (dimethyloldihydroxyethyleneurea)].

Design/methodology/approach

A statistical model of 23 32 mixed level factorial design was used for the study. Appratan N9211 (A) and Arkofix NF (B) were tested at three concentrations, whereas three factors fabric; weave (C), blend ratio (D) and curing method (E) were tested at two levels. The performance of the finish was evaluated by two response variables, which were tensile and tear strength.

Findings

The various conditions of high strength values of the fabrics were presented in this paper. It was found that the tear strength of the fabrics increased after finishing except for 50:50 viscose/cotton plain fabric, whereas the tensile strength of plain fabrics is better at shock cure and for a satin normal cure is better. The model adequacy plots exhibit that the assumptions of normality and independence are not desecrated. Moreover, the values of “predicted R2” are in reasonable agreement with the “adjusted R2,” which confirms that models have been accounted for most of the inconsistency.

Originality/value

This paper is a part of my PhD dissertation. Unlike the previous studies, this paper investigated the effect of two crosslinking agents, Appretan N9211 as anti-pilling and Arkofix NF as wrinkle resistant agents on 100% viscose and 50:50 viscose/cotton plain and satin. Three different concentrations of both the crosslinking agents were used. Also, fixation of the finishes was carried out at a normal cure and shock cure.

Article
Publication date: 17 December 2021

Farhana Naeem, Fareha Asim and Muhammad Tufail

Cellulosic fabric and plain weave are the most commonly used material in home textiles. The poor wrinkling, dimensional stability and pilling are some of the problems faced during…

68

Abstract

Purpose

Cellulosic fabric and plain weave are the most commonly used material in home textiles. The poor wrinkling, dimensional stability and pilling are some of the problems faced during usage. The textile industries apply resin finish to improve these characteristics. The purpose of this study is to improve pilling resistance, dimensional stability and smoothness appearance (SA) of rayon and rayon/cotton plain fabrics using different concentrations of dimethyloldihydroxyethylene urea (DMDHEU) and acrylic copolymer. The finish was fixed using two different fixation methods.

Design/methodology/approach

Three concentrations, 40, 100 and 150 g/l of Arkofix NF (DMDHE based) and Appretan N9211 (acrylic copolymer), were taken. The finish was applied at normal and shock cure. The effects of finish on pilling resistance, dimensional stability, smoothness, tear strength, light fastness, Berger whiteness and yellowness index of plain fabrics were investigated.

Findings

The changes in the characteristics of the finished fabrics were compared with unfinished fabrics. This study revealed that at 40 g/l of Arkofix NF and Appretan N9211 using a normal cure would improve the pilling resistance, dimensional stability and SA of the plain fabrics. Whereas, there was no adverse effect observed on tear strength, light fastness, Berger whiteness and yellowness index of plain fabrics at these conditions.

Originality/value

Unlike the previous studies, this paper proposed the single finish formulation where the functional characteristics of the plain rayon and rayon cotton fabrics meet the general requirement of a customer.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 April 2024

Quratulain Mohtashim, Salma Farooq and Fareha Asim

The application of indigo dyes in the denim industries has been criticised due to the introduction of non-renewable oxidation products into the environment. Previous studies have…

Abstract

Purpose

The application of indigo dyes in the denim industries has been criticised due to the introduction of non-renewable oxidation products into the environment. Previous studies have investigated that reducing sugars can be used as green alternatives to sodium dithionite in the indigo dyeing of cotton fabric owing to their reduced and stable redox potential in the dye bath. The purpose of this study was to dye denim cotton fabric with indigo dye using various reducing sugars and alkalis. The use of sucrose and potassium hydroxide (KOH) for indigo dyeing has been explored for the first time.

Design/methodology/approach

A mixed factorial design with four variables including alkali, pH, number of dips and type of reducing sugar at different levels was studied to identify a significant correlation between the effect of these variables on the colour strength and fastness properties of the dyeings.

Findings

Investigations were made to examine the significant factors and interactions of the selected responses in the eco-friendly dyeing method. This process has the potential to reduce the load of sulphite and sulphate generated in the dyebath due to the use of a conventional reducing agent, sodium dithionite. The colour strength of the dyeing reduced with fructose was found to be better than other reducing sugars and significantly influenced by the number of dips, pH levels and the interaction between pH and reducing sugars. Using fructose for indigo dyeing with two dips at a pH of 11.5, using KOH as an alkali, results in higher colour strength values. The fastness properties of the indigo-dyed sample with reducing sugars ranging from fair to good or good to excellent. Specifically, colour change receives a rating of grey scale 3–4, staining 4–5, dry rubbing 4 and light fastness 3–4. These assessments hold true across various factors such as the type of reducing sugar, alkali, pH and the number of dips. The optimised parameters leading to improved colour strength and fastness properties are also discussed.

Originality/value

This dyeing technique is novel and a green alternative to dithionite denim dyeing. This process is found to be useful for indigo dyeing of denim fabric leading to reduced and stable redox potential in the dyebath and acceptable colour strength of the dyed fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2023

Fareha Asim, Farhana Naeem and Shenela Naqvi

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This…

Abstract

Purpose

Face masks are the most recommended precautionary measure since the emergence of SARS-CoV-2 since 2020 and the most useful PPE against this virus and its variants so far. This study aims to develop reusable and biodegradable mask from 100% regenerated bamboo or/and its blend. Selection of natural and regenerated textile materials is to minimize generation of solid waste. This attempt will eventually protect our earth by minimizing or better discontinuing the production of the disposable nonbiodegradable face masks available worldwide.

Design/methodology/approach

Hundred percent regenerated bamboo and 50:50 bamboo:cotton were selected to knit plain and interlock fabrics for manufacturing of reusable sustainable face masks. A 23 32-mixed-level factorial design was applied to study the effect of liquor ratio and temperatures, fabric structure, blend ratios and finishes at three different levels. Model 23 32 has two factors (liquor ratio and temperatures) at three levels and three factors (fabric structure, blend ratios and type of finish) at two levels. Knitted fabrics were then applied with antibacterial finishes; sanitized T99-19 and sanitized T27-22, separately at three different liquor ratios (1:10, 1:12 and 1:15) and temperatures (45, 55 and 65 °C) via exhaust method. After completing processing, fabric thickness, pilling resistance, dimensional stability, bursting strength, Berger whiteness index, air permeability and antibacterial properties of each trial were evaluated using standard test procedures.

Findings

Selected fabrics treated either by sanitized T27 or sanitized T99 in a liquor ratio of 1:15 against 65 °C, showed excellent bacteriostatic/bactericidal activity. However, 100% regenerated bamboo interlock knitted fabric treated with sanitized T99 in a liquor ratio of 1:15 at 65 °C has the most desired values of dimensional stability, pilling resistance, Berger whiteness, fabric thickness, air permeability and bursting strength which made it the best for the manufacturing of the masks. Reusable mask is comprised of three layers in which the first and the third layers were of selected 100% regenerated bamboo fabric while a PM2.5 filter was inserted in between. Bacterial filtration efficiency, particle filtration efficiency, biocompatibility and microbial cleanliness will be evaluated in future, to compare the performance of proposed reusable and biodegradable face mask with N95 masks and other fabric masks available commercially.

Originality/value

This study resulted in a development of reusable eco-friendly facemask which was not attempted by the preceding investigations. Outcomes of this work pave the way for a greener and safer earth by using easily obtainable regenerated bamboo fabrics, antibacterial finishes and knitted structures.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 June 2022

Fareha Asim and Farhana Naeem

The textile sector is moving towards new technologies, where the application of nanotechnology is offering fabrics with multifunctional properties making fabric odourless…

Abstract

Purpose

The textile sector is moving towards new technologies, where the application of nanotechnology is offering fabrics with multifunctional properties making fabric odourless, hydrophobic, durable and self-cleaning. This aim of this research is to investigate self-cleaning ability of denim fabric with the application of zinc oxide nanoparticles (ZnO NPs) synthesized naturally. The primary focus of this investigation is achieving sustainability mark through green synthesis of ZnO NPs.

Design/methodology/approach

In this analysis, ZnO NPs being one of the metal oxides exhibiting self-cleaning, UV-protective and anti-microbial properties were synthesized naturally using Azadirachta Indica leaves. The prepared NPs were characterized by using X-ray diffraction and scanning electron microscopy analyses confirming their size and crystalline structure. Different formulations were investigated with varying concentration of zinc oxide and auxiliaries onto the denim fabric using pad-dry-cure application technique.

Findings

XRD analysis confirmed the successful green synthesis of ZnO NPs. SEM analysis revealed the homogeneous and hexagonal wurtzite NPs deposition on the denim fabric. It was ascertained that with 5% ZnO NPs and 7% Binder concentrations, the formulation resulted in a smooth and even layer on the denim fabric maintaining the appearance and feel at the same time offers appreciable grading (Grade 4) against the stringent stains of Ketchup, Coffee, Grape and Orange Juice with insignificant change in tensile strength.

Originality/value

In this study, self-cleaning attributes of denim fabric with zinc oxide nano formulations of different composition was studied to achieve promising functional properties in a single step not studied earlier.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 June 2022

Quratulain Mohtashim, Fareha Asim and Salma Farooq

The application of synthetic dyestuffs in the dyeing and printing industries has been criticized because of the introduction of contaminants into the environment. With time, the…

Abstract

Purpose

The application of synthetic dyestuffs in the dyeing and printing industries has been criticized because of the introduction of contaminants into the environment. With time, the increasing international awareness of environment and ecology preservation has led to the industry’s attention towards natural dyes and their efficient usage compared to synthetic counterparts. Because the need for “Green” goods and services are rising public awareness, this paper aims to use a banana bio-resource waste to dye cotton fabric.

Design/methodology/approach

Factorial design with three variables, including parts of a banana plant, combination of alkalis and application temperature at three different levels, was studied to identify a significant correlation between the effect of these variables on the colour strength and fastnesses of the dyed cotton fabrics.

Findings

Dyeing samples achieved with various parts of banana are found to offer significant colour strength and a good wash and rub fastness. Experimental design analysis helped to formulate a standard workable dyeing recipe with the minimum use of resources exhibiting reasonably good wash and rub fastness.

Originality/value

This dyeing technique is novel and can be found useful for partially replacing synthetic dyes with natural colourants possessing good washing and rubbing fastness.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 6 of 6